Paxos算法
基于消息传递且具有高度容错特性的一致性算法
Paxos算法是莱斯利·兰伯特(英语:Leslie Lamport,LaTeX中的“La”)于1990年提出的一种基于消息传递且具有高度容错特性的一致性算法。
问题和假设
分布式系统中的节点通信存在两种模型:共享内存(Shared memory)和消息传递(Messages passing)。基于消息传递通信模型的分布式系统,不可避免的会发生以下错误:进程可能会慢、被杀死或者重启,消息可能会延迟、丢失、重复,在基础 Paxos 场景中,先不考虑可能出现消息篡改即拜占庭错误的情况。Paxos 算法解决的问题是在一个可能发生上述异常的分布式系统中如何就某个值达成一致,保证不论发生以上任何异常,都不会破坏决议的一致性。一个典型的场景是,在一个分布式数据库系统中,如果各节点的初始状态一致,每个节点都执行相同的操作序列,那么他们最后能得到一个一致的状态。为保证每个节点执行相同的命令序列,需要在每一条指令上执行一个“一致性算法”以保证每个节点看到的指令一致。一个通用的一致性算法可以应用在许多场景中,是分布式计算中的重要问题。因此从20世纪80年代起对于一致性算法的研究就没有停止过。
为描述 Paxos 算法,Lamport 虚拟了一个叫做 Paxos 的希腊城邦,这个岛按照议会民主制的政治模式制订法律,但是没有人愿意将自己的全部时间和精力放在这种事情上。所以无论是议员,议长或者传递纸条的服务员都不能承诺别人需要时一定会出现,也无法承诺批准决议或者传递消息的时间。但是这里假设没有拜占庭将军问题(Byzantine failure,即虽然有可能一个消息被传递了两次,但是绝对不会出现错误的消息);只要等待足够的时间,消息就会被传到。另外,Paxos 岛上的议员是不会反对其他议员提出的决议的。
对应于分布式系统,议员对应于各个节点,制定的法律对应于系统的状态。各个节点需要进入一个一致的状态,例如在独立Cache对称多处理器系统中,各个处理器读内存的某个字节时,必须读到同样的一个值,否则系统就违背了一致性的要求。一致性要求对应于法律条文只能有一个版本。议员和服务员的不确定性对应于节点和消息传递通道的不可靠性。
算法
提出与证明
首先将议员的角色分为 proposers,acceptors,和 learners(允许身兼数职)。proposers 提出提案,提案信息包括提案编号和提议的 value;acceptor 收到提案后可以接受(accept)提案,若提案获得多数 acceptors 的接受,则称该提案被批准(chosen);learners 只能“学习”被批准的提案。划分角色后,就可以更精确的定义问题:
另外还需要保证 progress。这一点以后再讨论。
作者通过不断加强上述3个约束(主要是第二个)获得了 Paxos 算法。
批准 value 的过程中,首先 proposers 将 value 发送给 acceptors,之后 acceptors 对 value 进行接受(accept)。为了满足只批准一个 value 的约束,要求经“多数派(majority)”接受的 value 成为正式的决议(称为“批准”决议)。这是因为无论是按照人数还是按照权重划分,两组“多数派”至少有一个公共的 acceptor,如果每个 acceptor 只能接受一个 value,约束2就能保证。
于是产生了一个显而易见的新约束:
P1:一个 acceptor 必须接受(accept)第一次收到的提案。
注意 P1 是不完备的。如果恰好一半 acceptor 接受的提案具有 value A,另一半接受的提案具有 value B,那么就无法形成多数派,无法批准任何一个 value。
约束2并不要求只批准一个提案,暗示可能存在多个提案。只要提案的 value 是一样的,批准多个提案不违背约束2。于是可以产生约束 P2:
P2:一旦一个具有 value v 的提案被批准(chosen),那么之后批准(chosen)的提案必须具有 value v。
注:通过某种方法可以为每个提案分配一个编号,在提案之间建立一个全序关系,所谓“之后”都是指所有编号更大的提案。
如果 P1 和 P2 都能够保证,那么约束2就能够保证。
批准一个 value 意味着多个 acceptor 接受(accept)了该 value。因此,可以对 P2 进行加强:
P2a:一旦一个具有 value v 的提案被批准(chosen),那么之后任何 acceptor 再次接受(accept)的提案必须具有 value v。
由于通信是异步的,P2a 和 P1 会发生冲突。如果一个 value 被批准后,一个 proposer 和一个 acceptor 从休眠中苏醒,前者提出一个具有新的 value 的提案。根据 P1,后者应当接受,根据 P2a,则不应当接受,这中场景下 P2a 和 P1 有矛盾。于是需要换个思路,转而对 proposer 的行为进行约束:
P2b:一旦一个具有 value v 的提案被批准(chosen),那么以后任何 proposer 提出的提案必须具有 value v。
由于 acceptor 能接受的提案都必须由 proposer 提出,所以 P2b 蕴涵了 P2a,是一个更强的约束。
但是根据 P2b 难以提出实现手段。因此需要进一步加强 P2b。
假设一个编号为 m 的 value v 已经获得批准(chosen),来看看在什么情况下对任何编号为 n(n>m)的提案都含有 value v。因为 m 已经获得批准(chosen),显然存在一个 acceptors 的多数派 C,他们都接受(accept)了v。考虑到任何多数派都和 C 具有至少一个公共成员,可以找到一个蕴涵 P2b 的约束 P2c:
P2c:如果一个编号为 n 的提案具有 value v,那么存在一个多数派,要么他们中所有人都没有接受(accept)编号小于 n 的任何提案,要么他们已经接受(accept)的所有编号小于 n 的提案中编号最大的那个提案具有 value v。
可以用数学归纳法证明 P2c 蕴涵 P2b:
假设具有value v的提案m获得批准,当n=m+1时,采用反证法,假如提案n不具有value v,而是具有value w,根据P2c,则存在一个多数派S1,要么他们中没有人接受过编号小于n的任何提案,要么他们已经接受的所有编号小于n的提案中编号最大的那个提案是value w。由于S1和通过提案m时的多数派C之间至少有一个公共的acceptor,所以以上两个条件都不成立,导出矛盾从而推翻假设,证明了提案n必须具有value v;
若(m+1)..(N-1)所有提案都具有value v,采用反证法,假如新提案N不具有value v,而是具有value w',根据P2c,则存在一个多数派S2,要么他们没有接受过m..(N-1)中的任何提案,要么他们已经接受的所有编号小于N的提案中编号最大的那个提案是value w'。由于S2和通过m的多数派C之间至少有一个公共的acceptor,所以至少有一个acceptor曾经接受了m,从而也可以推出S2中已接受的所有编号小于n的提案中编号最大的那个提案的编号范围在m..(N-1)之间,而根据初始假设,m..(N-1)之间的所有提案都具有value v,所以S2中已接受的所有编号小于n的提案中编号最大的那个提案肯定具有value v,导出矛盾从而推翻新提案n不具有value v的假设。根据数学归纳法,我们证明了若满足P2c,则P2b一定满足。
P2c是可以通过消息传递模型实现的。另外,引入了P2c后,也解决了前文提到的P1不完备的问题。
内容
要满足P2c的约束,proposer提出一个提案前,首先要和足以形成多数派的acceptors进行通信,获得他们进行的最近一次接受(accept)的提案(prepare过程),之后根据回收的信息决定这次提案的value,形成提案开始投票。当获得多数acceptors接受(accept)后,提案获得批准(chosen),由proposer将这个消息告知learner。这个简略的过程经过进一步细化后就形成了Paxos算法。
在一个paxos实例中,每个提案需要有不同的编号,且编号间要存在全序关系。可以用多种方法实现这一点,例如将序数和proposer的名字拼接起来。如何做到这一点不在Paxos算法讨论的范围之内。
如果一个没有chosen过任何proposer提案的acceptor在prepare过程中回答了一个proposer针对提案n的问题,但是在开始对n进行投票前,又接受(accept)了编号小于n的另一个提案(例如n-1),如果n-1和n具有不同的value,这个投票就会违背P2c。因此在prepare过程中,acceptor进行的回答同时也应包含承诺:不会再接受(accept)编号小于n的提案。这是对P1的加强:
P1a:当且仅当acceptor没有回应过编号大于n的prepare请求时,acceptor接受(accept)编号为n的提案。
现在已经可以提出完整的算法了。
决议的提出与批准
通过一个决议分为两个阶段:
批准阶段:
这个过程在任何时候中断都可以保证正确性。例如如果一个proposer发现已经有其他proposers提出了编号更高的提案,则有必要中断这个过程。因此为了优化,在上述prepare过程中,如果一个acceptor发现存在一个更高编号的提案,则需要通知proposer,提醒其中断这次提案。
参考资料
最新修订时间:2022-08-26 10:21
目录
概述
问题和假设
参考资料